Math, asked by VinitNarwal, 8 months ago

find the domain and range of f(x)=x²-36/x-6.
x≠6​

Answers

Answered by Anonymous
6

Given ,

The function is

 \tt f(x) =  \frac{ {(x)}^{2} - 36 }{x - 6}

For f(x) to be defined ,

x- 6 ≠ 0

x ≠ 6

Therefore , Domain = R - {6}

Let , f(x) = y

Thus ,

 \tt \implies y = \frac{ {(x)}^{2}  - 36}{x - 6}

\tt \implies  y = \frac{ {(x)}^{2}  -  {(6)}^{2} }{x - 6}

\tt \implies y = \frac{(x + 6)(x - 6)}{(x - 6)}

\tt \implies y = x + 6

\tt \implies x =  y - 6

Since , x ≠ 6

Thus ,

y - 6 ≠ 6

y ≠ 12

Therefore , Range = R - {12}

_________________ Keep Smiling ☺️

Similar questions