Math, asked by farahalrafeeq, 1 year ago

Find the domain and range of the function f(x)=(3x-5)/(2x+5)

Answers

Answered by zaidazmi8442
4

I hope it will be answer of your question

Attachments:
Answered by rinayjainsl
0

Answer:

The domain of the function is

( -  \infin \:  ,\frac{ - 5}{2} )U( \frac{ - 5}{2} ,\infin )

The range if the function is

( -  \infin \:  ,\frac{ 3}{2} )U( \frac{ 3}{2} ,\infin )

Step-by-step explanation:

The given function is

f(x) =  \frac{3x - 5}{2x + 5}

We are required to find the domain and range of the function

Domain

For the function to exist and be finite,the denominator must not be equal to zero.Therefore,

 =  > 2x+5≠0 =  > x≠ \frac{ - 5}{2}

The function exists for all inputs except -2.5.Hence,the domain of the function is

( -  \infin \:  ,\frac{ - 5}{2} )U( \frac{ - 5}{2} ,\infin )

Range

Let the given function be

y =  \frac{3x - 5}{2x + 5}

 =  > y(2x + 5) = 3x - 5 \\  =  > 2xy + 5y - 3x =  - 5 \\  =  > x(2y  - 3) =  - 5 - 5y \\  =  > x =  \frac{5(1 + y)}{3 - 2y}

For x to be finite,the denominator must not be equal to zero

=>3-2y≠0 \\ =>y≠\frac{3}{2}=>f(x)≠ \frac{3}{2}

Therefore,the Range of the function is

( -  \infin \:  ,\frac{ 3}{2} )U( \frac{ 3}{2} ,\infin )

#SPJ3

Similar questions