Math, asked by s0298980n, 5 months ago

Find the domain and the range
F(x) =2x+1

Answers

Answered by Anonymous
17

 \bf \LARGE \color{pink}{Hola! }

GiveN :

 \mapsto \sf \: f(x) = 2x + 1

SolutioN :

 \sf {\underline  {Domain\:\: of \:\:  function}} :

 \sf \: We  \:  \: can  \:  \: put  \:  \: any \:  \:  value  \:  \: of  \:  \: x  \:  \: as \:  \:  it's  \:  \: a  \:  \: linear  \:  \: function

 \therefore \:  \sf \: domain \:  \: is \: \:  all \:  \: real \:  \: number \:  \:

Or we can say,

 \mapsto \sf  \underline{\boxed {\sf{D_f \in R}}}

______________________

 \sf {\underline  {Range\:\: of \:\:  function}} :

 \sf \: Substituting \:  \:  any \:  \:   real  \:  \: value  \:  \: of  \:  \: x  \:  \: we  \:  \: will \:  \:  get \:  \:  all  \:  \: real  \:  \: value \:  \:  as \:  \:  a  \:  \: output

 \therefore \:  \sf \: \: Range \:  \: is \: \:  all \:  \: real \:  \: number \:  \:

 \mapsto \sf  \underline{\boxed {\sf{R_f \in R}}}

_____________________

ConcepT BoosteR :

→ For better understanding we will look at the Graphical representation of the function.

[ Graph is attached in Photo ]

______________

HOPE THIS IS HELPFUL...

Attachments:
Similar questions