Math, asked by mirasolhanggoy, 11 hours ago

find the domain and the range of the following rational function.use any of the 3 notation

4.f(x)= 2+x/2x

5. f(x)= (x2+4x+3)/x²-9​

Answers

Answered by skdruv760
0

Answer:

Expert's answer

1. f(x)=\dfrac{2}{x+1}f(x)=

x+1

2

x+1\not=0=>x\not=-1x+1

=0=>x

=−1

Domain:(-\infin, -1)\cup (-1, \infin)Domain:(−∞,−1)∪(−1,∞)

Range:(-\infin, 0)\cup (0, \infin)Range:(−∞,0)∪(0,∞)

2. f(x)=\dfrac{3x}{x+3}f(x)=

x+3

3x

x+3\not=0=>x\not=-3x+3

=0=>x

=−3

f(x)=\dfrac{3x}{x+3}=\dfrac{3x+9-9}{x+3}=3-\dfrac{9}{x+3}f(x)=

x+3

3x

=

x+3

3x+9−9

=3−

x+3

9

Domain:(-\infin, -3)\cup (-3, \infin)Domain:(−∞,−3)∪(−3,∞)

Range:(-\infin, 3)\cup (3, \infin)Range:(−∞,3)∪(3,∞)

3. f(x)=\dfrac{3-x}{x-7}f(x)=

x−7

3−x

x-7\not=0=>x\not=7x−7

=0=>x

=7

f(x)=\dfrac{3-x}{x-7}=\dfrac{3-(x-7)-7}{x-7}=-1-\dfrac{4}{x-7}f(x)=

x−7

3−x

=

x−7

3−(x−7)−7

=−1−

x−7

4

Domain:(-\infin, 7)\cup (7, \infin)Domain:(−∞,7)∪(7,∞)

Range:(-\infin, -1)\cup (-1, \infin)Range:(−∞,−1)∪(−1,∞)

4. f(x)=\dfrac{2+x}{x}f(x)=

x

2+x

x\not=0x

=0

f(x)=\dfrac{2+x}{x}=1+\dfrac{2}{x}f(x)=

x

2+x

=1+

x

2

Domain:(-\infin, 0)\cup (0, \infin)Domain:(−∞,0)∪(0,∞)

Range:(-\infin, 1)\cup (1, \infin)Range:(−∞,1)∪(1,∞)

5. f(x)=\dfrac{x+1}{x^2-1}f(x)=

x

2

−1

x+1

x^2-1\not=0=>x\not=-1, x\not=1x

2

−1

=0=>x

=−1,x

=1

f(x)=\dfrac{x+1}{x^2-1}=\dfrac{x+1}{(x+1)(x-1)}=-\dfrac{1}{x-1}, x\not=\pm1f(x)=

x

2

−1

x+1

=

(x+1)(x−1)

x+1

=−

x−1

1

,x

=±1

Domain:(-\infin,-1)\cup (-1,1)\cup (1, \infin)Domain:(−∞,−1)∪(−1,1)∪(1,∞)

Range:(-\infin, 0)\cup (0, \infin)Range:(−∞,0)∪(0,∞)

Answered by anjalihada240
0

Answer:

Hlo good morning dude ✌️ ✌️

Similar questions