Math, asked by gaurav8811, 9 months ago

Find the domain and the range of the real function f defined by f(x) = √(x – 1).​

Answers

Answered by ITZINNOVATIVEGIRL588
36

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

Find the domain and the range of the real function f defined by f(x) = √(x – 1).

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

➡️Given real function,

➡️f(x) = √(x – 1)

➡️Clearly, √(x – 1) is defined for (x – 1) ≥ 0.

➡️So, the function f(x) = √(x – 1) is defined for x ≥ 1.

➡️Thus, the domain of f is the set of all real numbers greater than or equal to 1.

➡️Domain of f = [1, ∞).

➡️Now,

➡️As x ≥ 1 ⇒ (x – 1) ≥ 0 ⇒ √(x – 1) ≥ 0

➡️Thus, the range of f is the set of all real numbers greater than or equal to 0.

➡️Range of f = [0, ∞).

Answered by d687cyoyo
14

Answer:

Find the domain and the range of the real function f defined by f(x) = √(x – 1).

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }∣ANSWER∣

➡️Given real function,

➡️f(x) = √(x – 1)

➡️Clearly, √(x – 1) is defined for (x – 1) ≥ 0.

➡️So, the function f(x) = √(x – 1) is defined for x ≥ 1.

➡️Thus, the domain of f is the set of all real numbers greater than or equal to 1.

➡️Domain of f = [1, ∞).

➡️Now,

➡️As x ≥ 1 ⇒ (x – 1) ≥ 0 ⇒ √(x – 1) ≥ 0

➡️Thus, the range of f is the set of all real numbers greater than or equal to 0.

➡️Range of f = [0, ∞).

Similar questions