Math, asked by Anonymous, 4 months ago

Find the domain for the following functions.

 \rm 1] \: \: f(x) = \dfrac{ {2}^{x} }{(x - 2)} \\ \\ \rm 2] \: \: f(x) = \dfrac{ log_{e}(x - 1) }{ log_{e}(x - 2) } \\ \\ \rm 3] \: \: f(x) = log_{ |x| }( {x}^{2} + 1)

Answer only if you know. Please answer it as soon as possible and Need Clear Explanation ​

Answers

Answered by shadowsabers03
6

1. Given,

\longrightarrow\rm{f(x)=\dfrac{2^x}{x-2}}

We know the denominator of a fraction cannot be zero.

\rm{\longrightarrow x-2\neq0}

\rm{\longrightarrow x\neq2}

So the domain is,

\rm{\longrightarrow\underline{\underline{x\in[2,\ \infty)}}}

2. Given,

\rm{\longrightarrow f(x)=\dfrac{\log_e(x-1)}{\log_e(x-2)}}

As the denominator of a fraction can't be zero,

\rm{\longrightarrow \log_e(x-2)\neq0}

\rm{\longrightarrow x-2\neq1}

\rm{\longrightarrow x\neq3}

\mathrm{\Longrightarrow x\in}\ \mathbb{R}-\mathrm{\{3\}\quad\quad\dots(1)}

Since the function \rm{f(x)=\log x} is defined for \rm{x>0,}

\rm{\longrightarrow x-1>0}

\rm{\longrightarrow x>1}

\rm{\Longrightarrow x\in(1,\ \infty)\quad\quad\dots(2)}

And,

\rm{\longrightarrow x-2>0}

\rm{\longrightarrow x>2}

\rm{\Longrightarrow x\in(2,\ \infty)\quad\quad\dots(3)}

Finally, taking \rm{(1)\land(2)\land(3),}

\mathrm{\longrightarrow x\in}\ [\mathbb{R}-\mathrm{\{3\}}]\cap\mathrm{(1,\ \infty)\cap(2,\ \infty)}

\rm{\longrightarrow\underline{\underline{x\in(2,\ \infty)-\{3\}}}}

3. Given,

\rm{\longrightarrow f(x)=\log_{|x|}\left(x^2+1\right)}

Or,

\rm{\longrightarrow f(x)=\dfrac{\log_e\left(x^2+1\right)}{\log_e|x|}}

Since the denominator of a fraction can't be zero,

\rm{\longrightarrow \log_e|x|\neq0}

\rm{\longrightarrow |x|\neq1}

\rm{\longrightarrow x\neq\pm1}

\mathrm{\Longrightarrow x\in}\ \mathbb{R}-\mathrm{\{-1,\ 1\}\quad\quad\dots(4)}

Since the function \rm{f(x)=\log x} is defined for \rm{x>0,}

\rm{\longrightarrow x^2+1>0}

\rm{\longrightarrow x^2>-1}

\rm{\Longrightarrow x^2\in(-1,\ \infty)\quad\quad\dots(5.1)}

But we know the range of the function \rm{f(x)=x^2} is,

\rm{\longrightarrow x^2\in[0,\ \infty)\quad\quad\dots(5.2)}

Taking (5.1)\land(5.2),

\rm{\longrightarrow x^2\in[0,\ \infty)}

\rm{\Longrightarrow x\in(-\infty,\ 0]\cup[0,\ \infty)}

\rm{\longrightarrow x\in}\ \mathbb{R}\quad\quad\dots\mathrm{(5)}

And,

\rm{\longrightarrow |x|>0}

\rm{\longrightarrow |x|\in(0,\ \infty)}

\rm{\Longrightarrow x\in(-\infty,\ 0)\cup(0,\ \infty)}

\mathrm{\longrightarrow x\in}\ \mathbb{R}-\mathrm{\{0\}\quad\quad\dots(6)}

Finally, taking \rm{(4)\land(5)\land(6),}

\mathrm{\Longrightarrow x\in}\ [\mathbb{R}-\mathrm{\{-1,\ 1\}}]\cap\mathbb{R}\cap[\mathbb{R}-\mathrm{\{0\}}]

\longrightarrow\underline{\underline{\mathrm{x\in}\ \mathbb{R}-\mathrm{\{-1,\ 0,\ 1\}}}}

Or,

\rm{\longrightarrow\underline{\underline{x\in(-\infty,\ -1)\cup(-1,\ 0)\cup(0,\ 1)\cup(1,\ \infty)}}}


amitkumar44481: Perfect :-)
mddilshad11ab: great:)
Similar questions