Find the domain of
f(x) =
Answers
Answered by
0
Given:
Everything in the under root should be positive
So,
f(x) ≥ p
| 2x - 1 / x² -1 | - 1 ≥ 0
| 2x - 1 / (x + 1)(x - 1) | - 1 ≥ 0
| 2x - 1 / (x + 1)(x - 1) | ≥ 1
Case - 1
==> 2x - 1 / (x + 1)(x - 1) ≥ 1
==> 2x - 1 / (x + 1)(x - 1) - 1 ≥ 0
==> 2x - 1 - x² + 1 / (x + 1)(x - 1) ≥ 0
==> 2x - x² / (x + 1)(x - 1) ≥ 0
==> x ( 2 - x ) / (x + 1)(x - 1) ≥ 0
==> x ( x - 2) / (x + 1)(x - 1) ≤ 0
Critical Points : 0, 2, -1, 1
Here,
x € ( -1, 0 ] U ( 1, 2 ]
Case - 2
==> 2x - 1 / (x + 1)(x - 1) ≤ - 1
==> 2x - 1 + x² - 1 / (x + 1)(x - 1) ≤ 0
==> x² + 2x - 2 / (x + 1)(x - 1) ≤ 0
==> (x - √3 + 1)(x + 1 + √3) / (x + 1)(x - 1) ≤ 0
Critical Points : √3 - 1 , -√3 - 1 , -1, 1
Here,
x € [ -√3 - 1, -1 ) U [ √3 - 1, 1 )
Total:
x € [ - √3 - 1 , - 1 ) U ( 1 , 2 ]
Attachments:
Similar questions