Math, asked by Anonymous, 18 hours ago

Find the domain of  \bf f(x) = \cfrac{x²+3x+5}{x²-5x+4}

Option :-

 \bf \quad 1. \quad \mathbb R \bf - \{4\}

 \bf \quad 2. \quad \mathbb R \bf - \{0\}

 \bf \quad 3. \quad \mathbb R \bf - \{1,4\}

 \bf \quad 1. \quad \mathbb R \bf - \{1\}

Answers

Answered by dcudwfwuf
1

Answer:

R-[1,4]

is your answer.

Answered by senboni123456
6

Step-by-step explanation:

We have,

f(x) =  \dfrac{ {x}^{2} + 3x + 5 }{ {x}^{2} - 5x + 4 }

 \implies \: f(x) =  \dfrac{ {x}^{2} + 3x + 5 }{ {x}^{2} - 4x - x + 4 }

 \implies \: f(x) =  \dfrac{ {x}^{2} + 3x + 5 }{ x(x - 4) - 1(x  -  4 )}  \\

 \implies \: f(x) =  \dfrac{ {x}^{2} + 3x + 5 }{( x - 1)(x - 4) }  \\

To be defined,

 \implies \:( x - 1)(x - 4) \ne0  \\

 \implies \: x  \ne 1 \:  \:  \: or \:  \:  \: x \ne4 \\

 \therefore dom \big( f(x)\big) \in \: R -  \{1,4 \}

Similar questions