Find the domain of the function f(x)= sin4x+sin3x+sin2x/cos4x+cos3x+cos2x
Answers
Answered by
12
Answer:
Step-by-step explanation:
Find the domain of the function f(x)= sin4x+sin3x+sin2x/cos4x+cos3x+cos2x
sin a + sin b = 2sin((a+b)/2)cos((a-b)/2
sin4x + sin2x = 2sin3xcosx
cos a + cosb = 2cos((a+b)/2)cos((a-b)/2
cos4x + cos2x = 2cos3xcosx
putting these values
(2sin3xcox + sin3x) / (2cos3xcosx + cos3x)
= (sin3x(2cosx+1))/(cos3x(2cosx+1))
cancelling 2cosx +1
so 2cosx +1 not equal to 0
= sin3x/cos3x
= tan3x
tan3x is real when cos3x not equal to 0
so tan 3x is real all for real numbers except the values where 3x is equal to , the values π /2 + πn for all integer values of n
x is not equal to π /6 + πn/3
2cosx +1 not equal to 0
cos x not equal to -1/2
x not equal to 2π/3 + πn
domain of function is all values of x except
π /6 + πn/3 & 2π/3 + πn
Step-by-step explanation:
Find the domain of the function f(x)= sin4x+sin3x+sin2x/cos4x+cos3x+cos2x
sin a + sin b = 2sin((a+b)/2)cos((a-b)/2
sin4x + sin2x = 2sin3xcosx
cos a + cosb = 2cos((a+b)/2)cos((a-b)/2
cos4x + cos2x = 2cos3xcosx
putting these values
(2sin3xcox + sin3x) / (2cos3xcosx + cos3x)
= (sin3x(2cosx+1))/(cos3x(2cosx+1))
cancelling 2cosx +1
so 2cosx +1 not equal to 0
= sin3x/cos3x
= tan3x
tan3x is real when cos3x not equal to 0
so tan 3x is real all for real numbers except the values where 3x is equal to , the values π /2 + πn for all integer values of n
x is not equal to π /6 + πn/3
2cosx +1 not equal to 0
cos x not equal to -1/2
x not equal to 2π/3 + πn
domain of function is all values of x except
π /6 + πn/3 & 2π/3 + πn
Answered by
0
sorry I can't do it I will try my best
Similar questions
World Languages,
7 months ago
Computer Science,
7 months ago
English,
7 months ago
Science,
1 year ago
Science,
1 year ago