Math, asked by iamavish8414, 1 year ago

Find the domain of under root of a square minus x square where a is greater than 0

Answers

Answered by bharathparasad577
0

Answer:

Concept:

Relations and functions

Step-by-step explanation:

Given:

$$\sqrt{a^{2}-x^{2}}(a \geq 0)$$

Find:

$$\text { Domain of } \sqrt{a^{2}-x^{2}}(a \geq 0)$$

Solution:

Let $f(x)=\sqrt{a^{2}-x^{2}}$

$$\begin{aligned}&\Rightarrow \quad(a+x) \cdot(a-x) \geq 0 . \\&\Rightarrow \quad-(a+x)(x-a) \geq 0 \\&\Rightarrow \quad(x-a) \cdot(x+a) \leq 0\end{aligned}$$

$$\begin{gathered}a^{2}-x^{2} \geq 0 \\a^{2} \geq x^{2} \\a \geq x,-a \leq x \\x=[-a, a]\end{gathered}$$

#SPJ2

Similar questions