find the domainand range of f(x) =√(9-x)
Answers
We're given a function,
We've to find its domain and range.
Since the function is defined only for we get,
Or,
This is the domain of the function.
Let,
Consider the domain of our function.
From (1),
Adding 9,
Multiplying by -1, [note the interval limit change]
Taking the square root,
[ because ]
Or,
This is the range of the function.
We're given a function,
\longrightarrow f(x)=\sqrt{9-x}⟶f(x)=
9−x
We've to find its domain and range.
Since the function f(x)=\sqrt xf(x)=
x
is defined only for x\geq0,x≥0, we get,
\longrightarrow 9-x\geq0⟶9−x≥0
\longrightarrow x\leq9⟶x≤9
Or,
\longrightarrow\underline{\underline{x\in(-\infty,\ 9]}}⟶
x∈(−∞, 9]
This is the domain of the function.
Let,
\longrightarrow y=\sqrt{9-x}⟶y=
9−x
\longrightarrow y^2=9-x⟶y
2
=9−x
\longrightarrow x=9-y^2\quad\quad\dots(1)⟶x=9−y
2
…(1)
Consider the domain of our function.
\longrightarrow x\in(-\infty,\ 9]⟶x∈(−∞, 9]
From (1),
\longrightarrow 9-y^2\in(-\infty,\ 9]⟶9−y
2
∈(−∞, 9]
Adding 9,
\longrightarrow -y^2\in(-\infty,\ 0]⟶−y
2
∈(−∞, 0]
Multiplying by -1, [note the interval limit change]
\longrightarrow y^2\in[0,\ \infty)⟶y
2
∈[0, ∞)
Taking the square root,
\longrightarrow y\in[0,\ \infty)⟶y∈[0, ∞)
[y\notin(-\infty,\ 0)y∈
/
(−∞, 0) because \sqrt{y^2}=|y|.
y
2
=∣y∣.
Or,
\longrightarrow\underline{\underline{f(x)\in[0,\ \infty)}}⟶
f(x)∈[0, ∞)
This is the range of the function.