Math, asked by mtayyab5661, 9 months ago

find the dy/dx if y=x sqrt{lnx} ​

Answers

Answered by soham4net
0

I have given the attachment

You will understand the problem when you know the formula.

Attachments:
Answered by Anonymous
42

Question :

Find \dfrac{dy}{dx} if y = x \sqrt{ \ logx}

Theory :

{\red{\boxed{\large{\bold{Chain\:Rule}}}}}

Let y=f(t) ,t = g(u) and u =m(x) ,then

 \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

y = x \sqrt{ \ logx}

Differentiate with respect to x

 \dfrac{dy}{dx}  =  \sqrt{ \log  x} \dfrac{d(x)}{dx}   + x \dfrac{d( \sqrt{ \log  x} )}{dx}

 \implies \dfrac{dy}{dx}  =  \sqrt{ \log x}  \times 1 + x \times  \dfrac{1}{2 \sqrt{ \log x} }  \times  \dfrac{1}{x}

 \implies \dfrac{dy}{dx}  =  \sqrt{ \log x}  +   \dfrac{1}{2 \sqrt{ \log x} }

 \implies \dfrac{dy}{dx}  =  \dfrac{2 \log x + 1}{2 \sqrt{ \log  x} }

which is the required solution!

_________________________

Some formulas related to Differention:

1) \dfrac{d(sinx)}{dx}  = cosx

2) \dfrac{d(x {}^{n}) }{dx}  = nx {}^{n - 1}

3) \dfrac{d(constant)}{dx}  = 0

Similar questions