Math, asked by krishna1982pradhan, 11 months ago

find the eccentricity and foci of the hyperbola 9y^2-4x^2=36.​

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eccentricity=\frac{\sqrt{13}}{2}}}}\\

\green{\tt{\therefore{Foci=(0,\pm\sqrt{15})}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Eqn\:of\:hyperbola = 4x^{2}-9y^{2}=-36} \\  \\ \red{ \underline \bold{To \: Find : }}\\ \tt{ : \implies Eccentricity(e) = ?} \\ \\ \tt{ : \implies Foci = ?}

• According to given question :

 \tt {:  \implies  -{4x}^{2}  + 9 {y}^{2}  = 36} \\  \\    \tt{: \implies  -\frac{4x^{2} }{36}  +  \frac{ 9{y}^{2} }{36} = 1 } \\  \\   \tt{ : \implies   -\frac{ {x}^{2} }{ \frac{36}{4} }   +  \frac{ {y}^{2} }{ \frac{36}{9} }  = 1} \\  \\   \tt{: \implies  -\frac{ {x}^{2} }{9}  + \frac{ {y}^{2} }{4}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  -\frac{ {x}^{2} }{ {a}^{2} }   +   \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  9} \\   \\   \tt{\circ \:  {b}^{2}  = 4} \\  \\  \bold{As \: we \: know \: that}

\tt{: \implies  {a}^{2}  =  {b}^{2} ( {e}^{2}  - 1)} \\   \\   \tt{:\implies  9 =  4( {e}^{2}  - 1)} \\  \\  \tt{  : \implies  \frac{9}{4}  =  {e}^{2}  - 1} \\  \\   \tt  {: \implies  {e}^{2}  =  \frac{9}{4}  + 1} \\  \\    \green{\tt{:\implies e =   \frac{\sqrt{13}}{2}   }} \\  \\  \bold{As \: we \: know \: that} \\  \tt{ : \implies foci = (0,\pm be)} \\  \\   \tt{ :  \implies foci  = (0, \pm 2\times \frac{\sqrt{13}}{2}   )}  \\  \\  \green{ \tt {:  \implies Focus   = (0,\pm \sqrt{13})}}

Similar questions