Find the eigenvalues and eigenvectors of the matrix [
8 −6 2
−6 7 −4
2 −4 3
]
Answers
Answer:
Solve linear equations (Sor method) - relaxation method 8x+y+z=8,2x+4y+z=4,x+3y+5z=5. 60. Solve linear equations - Gauss Jacobi 7y+2x=11,3x-y=5.
Concept:
A matrix is a set array of numbers that are being arranged in rows and columns in a rectangular array.
Given:
Matrix,
8 −6 2
A = −6 7 −4
2 −4 3
Find:
We are asked to find the eigenvalues and eigenvectors of the given matrix.
Solution:
We have,
Matrix,
8 −6 2
A = −6 7 −4
2 −4 3 ,
So,
So to find eigenvalues;
Eigenvalues = [(determinent of matrix) - (λI)]
i.e. [A - λI] = 0
So,
[ 8 −6 2 ] [ λ 0 0 ]
[ −6 7 −4 ] - [ 0 λ 0 ] = 0
[ 2 −4 3 ] [ 0 0 λ ]
We get,
[ (8 - λ) −6 2 ]
[ −6 (7 - λ) −4 ] = 0
[ 2 −4 (3 - λ) ]
Now,
Solve for λ ,
We get,
[(168 - 45λ + 3λ² - 56λ + 15λ² - λ³) + 48 + 48 ] - [ 28 - 4λ + 128 - 16λ + 108 - 36λ] = 0
Simplify,
(8 - λ) [(7 - λ) × (3-λ) - (-4) × (-4)] - [(-6) [(-6) × (3-λ) - (-4)×2)] +2 [(-6) × (-4) - (7-λ) × 2)] = 0
Simplify more,
[(8 - λ) (21 - 10λ + λ²) - 16] - [6 ( -18 + 6λ) - (-8)] + 2 [(24 - (14 - 2λ)] = 0
[(8 - λ) (5- 10λ + λ²)] + 6 (-10 + 6λ) + 2 (10 + 2λ) = 0
Now, making it more simple,
(40 - 85λ + 18λ² - λ³) + ( -60 + 36λ) + (20 +4 λ) = 0
40 - 85λ + 18λ² - λ³ -60 + 36λ + 20 +4 λ = 0
Rewrite it,
- λ³ + 18λ² - 85λ + 40λ + 60 - 60 = 0
We get,
( -λ³ + 18λ² - 45λ) = 0
Now, making fctors,
We get,
-λ (λ - 3) (λ - 15)=0
So, the factors i.e. eigenvalues and eigenvectors are (0, 3, 15).
Hence we can say that the eigenvalues and eigenvectors are (0, 3, 15).
#SPJ3