Physics, asked by sumankundu9989, 11 months ago

Find the elastic potential energy stored in each spring shown in figure (12−E8), when the block is in equilibrium. Also find the time period of vertical oscillation of the block.
Figure

Answers

Answered by shilpa85475
4

Explanation:

  • We know that force = weight = mg.  So, at spring \mathrm{k}_{1 \mathrm{c}} \mathrm{x}_{1}=\frac{\mathrm{m} \mathrm{g}}{\mathrm{k}_{1}}, where m is mass and g is acceleration due to gravity.  
  • When the block is in equilibrium, the elastic potential energy stored in spring k_1 is acceleration due to gravity.  When the block is in equilibrium, the elastic potential energy stored in spring k_1 is \mathrm{PE}_{1}=(1 / 2) \mathrm{k}_{1} \mathrm{x}_{1}^{2}=\frac{\mathrm{m}^{2} \mathrm{g}^{2}}{2 \mathrm{k}_{1}}. Likewise, \mathrm{PE}_{2}=\frac{\mathrm{m}^{2} \mathrm{e}^{2}}{2 \mathrm{k}_{2}} and \mathrm{PE}_{3}=\frac{\mathrm{m}^{2} \mathrm{s}^{2}}{2 \mathrm{k}_{3}}.
  • We know that the time period of vertical oscillation of the block  \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}, where \mathrm{k}=\frac{\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{\mathrm{a}}}{\mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{2} \mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{a}} \mathrm{k}_{\mathrm{l}}}. Thus, on substituting the value, we get the time period \mathrm{T}=2 \pi \sqrt{m\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}\right)}.      
Attachments:
Similar questions