find the eq of the circle which passes through the point (1,3)and (2,-1) and has its centre on the line 2x +y-4 =0
Answers
Answered by
3
hello users ...
solution:-
let the equation of circle is
= x² + y² + 2gx + 2fy + c = 0 ....(1.)
where,
(-g , - f) is the centre
=> -2g - f - 4 = 0
....( given equation is 2x + y -4 = 0 , and point (x,y) as centre)
=> f = -2g -4 ..(2.)
As,
(1,3) lies on equation of circle (1.)
=>1² + 3² +2×1×g + 2×3×f +c = 0
=> 1+9 +2g +6f +c = 0
=> 10 + 2g + 6f +c = 0 ....(3.)
=> 10 + 2g + 6(-2g -4) +c = 0 ..from equ. (2.)
=> 10 + 2g -12g - 24 +c = 0
=> -14 -10g +c = 0 ...(4.)
=> c = 10g +14 ...(5.)
and,
As,
(2,-1) lies on equation of circle (1.)
=> 2² +(-1)² + 2×2×g + 2×(-1)×f + c = 0
=> 4+1 +4g - 2f +c = 0
=> 5 +4g - 2f +c = 0
=>5 + 4g -2(-2g -4) +c = 0 ...from equation (2.)
=> 5 + 4g +4g +8 +c = 0
=> 13 + 8g +c = 0 .....(6.)
=>c = -13 - 8g ..(7.)
now,
comparing (5.) and (7.)
we get.
=> 10g +14= -13 - 8g
=> 10g + 8g = -13 - 14
=> 18g = -27
=> g = -27/18
Now,
putting the value of g in (2.)
we get
=> f = -2×(-27/18) - 4
=> f = 27/9 - 4
=> f = 3 - 4 = -1
Now,
putting the value of g in equation (5.)
we get,
=> c = 10×(-27/18) + 14
=> c = 5×(-3) + 14
=> c = -15 +14 = -1
Now,
putting value of f,g and c in equation (1.)
We get,
=> x² + y² + 2×(-27 / 18) × x + 2×(-1) × y + (-1) = 0
=> x² + y² - 27 x / 9 - 2y -1 = 0
=> 9x² + 9y² - 27 x -18y - 9 = 0 Answer
✮✭ hope it helps :) ✮✭
solution:-
let the equation of circle is
= x² + y² + 2gx + 2fy + c = 0 ....(1.)
where,
(-g , - f) is the centre
=> -2g - f - 4 = 0
....( given equation is 2x + y -4 = 0 , and point (x,y) as centre)
=> f = -2g -4 ..(2.)
As,
(1,3) lies on equation of circle (1.)
=>1² + 3² +2×1×g + 2×3×f +c = 0
=> 1+9 +2g +6f +c = 0
=> 10 + 2g + 6f +c = 0 ....(3.)
=> 10 + 2g + 6(-2g -4) +c = 0 ..from equ. (2.)
=> 10 + 2g -12g - 24 +c = 0
=> -14 -10g +c = 0 ...(4.)
=> c = 10g +14 ...(5.)
and,
As,
(2,-1) lies on equation of circle (1.)
=> 2² +(-1)² + 2×2×g + 2×(-1)×f + c = 0
=> 4+1 +4g - 2f +c = 0
=> 5 +4g - 2f +c = 0
=>5 + 4g -2(-2g -4) +c = 0 ...from equation (2.)
=> 5 + 4g +4g +8 +c = 0
=> 13 + 8g +c = 0 .....(6.)
=>c = -13 - 8g ..(7.)
now,
comparing (5.) and (7.)
we get.
=> 10g +14= -13 - 8g
=> 10g + 8g = -13 - 14
=> 18g = -27
=> g = -27/18
Now,
putting the value of g in (2.)
we get
=> f = -2×(-27/18) - 4
=> f = 27/9 - 4
=> f = 3 - 4 = -1
Now,
putting the value of g in equation (5.)
we get,
=> c = 10×(-27/18) + 14
=> c = 5×(-3) + 14
=> c = -15 +14 = -1
Now,
putting value of f,g and c in equation (1.)
We get,
=> x² + y² + 2×(-27 / 18) × x + 2×(-1) × y + (-1) = 0
=> x² + y² - 27 x / 9 - 2y -1 = 0
=> 9x² + 9y² - 27 x -18y - 9 = 0 Answer
✮✭ hope it helps :) ✮✭
Anonymous:
superb !!
Similar questions