Math, asked by nishantkumar530, 11 months ago

Find the eqn of hyperbola whose foci are (6,4) anf (-4,4) and eccentricity is 2.​

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=12(x-1)^{2}-4(y-4)^{2}=75}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = (6,4)\:and\:(-4,4)} \\  \\   \tt{ : \implies Eccentricity(e) = 2} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\   \  \tt{: \implies Foci = 2ae } \\  \\   \tt{ : \implies Foci \ =  \sqrt{(6-(-4))^{2}+(4-4)^{2}}=10} \\  \\   \tt{ : \implies 2ae = 10} \\  \\    \tt{: \implies a \times {2} = 5} \\  \\    \green{ \tt{: \implies a = \frac{5}{2} }}\\  \\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\   \tt{:  \implies  {b}^{2}  =  \frac{5}{2}^{2}( 2^{2}  - 1)} \\  \\ \green{   \tt{ : \implies   {b}^{2}  =\frac{25}{4}\times 3} }\\  \\    \tt{: \implies   {b}^{2} =\frac{75}{4}} \\\\  \tt{:\implies Co-ordinate\:of\:centre=\frac{6+(-4)}{2},\frac{4+4}{2}}\\\\ \tt{:\implies Co-ordinate\:of\:centre=(1,4) }\\\\  \text{Putting \: given \: values \: in \: (1)} \\  \tt{  : \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \green{ \tt{: \implies  \frac{ {(x-1)}^{2} }{\frac{25}{4}}  - \frac{ {(y-4)}^{2} }{\frac{75}{4}}  = 1}} \\  \\    \green{\tt{\therefore Eqn \: of \:hyperbola  \: is \: 12{(x-1)}^{2}  -  4{(y-4)}^{2}  = 75}}

Answered by shrutisingh089
0

Find the eqn of hyperbola whose foci are (6,4) anf (-4,4) and eccentricity is 2.

Similar questions