Math, asked by bonijagadeeswari, 4 months ago

find the equ. of hyperbole lactus rectum is 8 and e is 3/root 5 ​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

Latus rectum = 8

Eccentricity,

e =  \frac{3}{ \sqrt{5} }  \\

 \implies {e}^{2}  =  \frac{9}{5}  \\

 \implies1 +  \frac{ {b}^{2} }{ {a}^{2} }  =  \frac{9}{5}  \\

 \implies \frac{ {b}^{2} }{ {a}^{2} }  =  \frac{4}{5}  \\

 \implies \frac{b}{a}  =  \frac{2}{ \sqrt{5} }  \\

Also,

 2\frac{ {b}^{2} }{a}  = 8 \\

 \implies \frac{ {b}^{2} }{a}  = 4 \\

Now,

 \frac{b}{a}  \times  \frac{a}{ {b}^{2} }  =  \frac{2}{ \sqrt{5} }  \times  \frac{1}{4}  \\

 \implies \frac{1}{b}  =  \frac{1}{2 \sqrt{5} }  \\

 \implies \: b = 2 \sqrt{5}

a =  \frac{ \sqrt{5} }{2}  \times b

 \implies \: a =  \frac{ \sqrt{5} }{2}  \times 2 \sqrt{5}

 \implies \: a = 5

Required equation of hyperbola,

 \frac{ {x}^{2} }{25}  -   \frac{ {y}^{2} }{20}   = 1 \\

 \implies4 {x}^{2}  - 5 {y}^{2}  = 100

Similar questions