Math, asked by disha12348, 8 months ago

find the equal sides of a rectangle PQRS​

Answers

Answered by UnicornSanjana
0

Answer:

Here, PQRS is a rectangle.

As we know in rectangle both the diagonals are equal.

⇒  PR=QS

Also diagonals bisect each other.

⇒  PO=QO

⇒  ∠OPQ=∠PQO              [ Base angles of an equal sides are also equal ]

⇒  ∠OPQ=24o                     [ Given ]

∴  ∠PQO=24o

In △PQO,

⇒  ∠OPQ+∠PQO+∠QOP=180o

⇒  24o+24o+x=180o

⇒  48o+x=180o

∴  x=132o

Since, PQRS is a rectangle, PQ∥SR and PR is a transversal.

⇒  ∠QPR=∠SRP            [ Alternate angles ]

therefore  ∠SRP=24o

⇒  ∠SRP+∠PRQ=90o        [ Angle of an rectangle ]

⇒  24o+y=90o

∴  y=66o

Answered by gugan64
23

Answer:

Here, PQRS is a rectangle.

As we know in rectangle both the diagonals are equal.

⇒  PR=QS

Also diagonals bisect each other.

⇒  PO=QO

⇒  ∠OPQ=∠PQO              [ Base angles of an equal sides are also equal ]

⇒  ∠OPQ=24  

o

                     [ Given ]

∴  ∠PQO=24  

o

 

In △PQO,

⇒  ∠OPQ+∠PQO+∠QOP=180  

o

 

⇒  24  

o

+24  

o

+x=180  

o

 

⇒  48  

o

+x=180  

o

 

∴  x=132  

o

 

Since, PQRS is a rectangle, PQ∥SR and PR is a transversal.

⇒  ∠QPR=∠SRP            [ Alternate angles ]

therefore  ∠SRP=24  

o

 

⇒  ∠SRP+∠PRQ=90  

o

        [ Angle of an rectangle ]

⇒  24  

o

+y=90  

o

 

∴  y=66  

o

Step-by-step explanation:

Similar questions