Math, asked by vishal98059, 4 months ago


Find the equation of a circle which of center is (2, 2) and which passes through the point (4,5)​

Answers

Answered by Anonymous
13

\large\sf\underline{Correct\:Question}

Find the equation of circle with centre (2,2) and passes through the point (4,5).

\large\sf\underline{Answer}

{\sf{{\red{➻\:x^{2}+y^{2}-4x-4y-5=0}}}}

\large\sf\underline{Solution}

The centre of the circle is given as :

  • ( h , k ) = ( 2 , 2 )

Since the circle passes through the point ( 4 , 5 ) , the radius ( r ) of the circle is the distance between the point ( 2 , 2 ) and ( 4 , 5 ) .

⠀⠀⠀

So we know ,

\small{\underline{\boxed{\mathrm\pink{➻\:Radius=\sqrt{(a-h)^{2}+(b-k)^{2}}}}}}

Here , a = 2

⠀⠀⠀⠀b = 2

⠀⠀⠀⠀h = 4

⠀⠀⠀⠀k = 5

Now substituting the values we get radius as :

\sf➞\:r=\sqrt{(2-4)^{2}+(2-5)^{2}}

\sf➞\:r=\sqrt{(-2)^{2}+(-3)^{2}}

\sf➞\:r=\sqrt{4+9}

{\sf{{\red{➞\:r=\sqrt{13}}}}}

Thus the equation of the circle is :

\small{\underline{\boxed{\mathrm\pink{(x-h)^{2}+(y-k)^{2}=r^{2}}}}}

Substituting the values we get the equation as :

\sf➞\:(x-2)^{2}+(y-2)^{2}=[\sqrt{13}]^{2}

\sf➞\:x^{2}-4x+4+(y^{2}-4y+4)=13

\sf➞\:x^{2}-4x+4+y^{2}-4y+4=13

\sf➞\:x^{2}+y^{2}-4x-4y+4+4-13=0

\sf➞\:x^{2}+y^{2}-4x-4y+8-13=0

\small{\underline{\boxed{\mathrm\red{➻\:x^{2}+y^{2}-4x-4y-5=0}}}}

!! Hope it helps !!

Similar questions