Math, asked by ajaykodle03dec, 5 months ago

Find the equation of a curve passing through the point (0, 0) and whose differential equation is

e sin x.

dx

dy​

Answers

Answered by Anonymous
6

Answer:

ANSWER

given,

dx

dy

=e

x

sinx

dy=e

x

sinx.dx

∫dy=∫e

x

sinx.dx → integrating both sides.

det, ∫e

x

sinx dx=I−−−−(1)

y=∫

f(x)

e

x

g(x)

sinx

dx=I

Since, ∫f(x)g(x)dx=f(x).∫g(x)dx−∫[f

(x)∫g(x)dx]dx

∴ ⇒ e

x

.∫sinx dx−∫[e

x

.∫sinx dx]

I=e

x

.(−cosx)−∫e

x

.(−cosx).dx

I=−e

x

cosx+∫

f(x)

e

x

.

g(x)

cosx

dx

Now apply same formula as above

I=−e

x

cosx.+[e

x

.∫cosx.dx−∫(ex.∫cosx.dx)dx]

I=−e

x

.cosx+

e

x

.sinx−

(I)

∫e

x

.sinx.dx

I=−e

x

cosx+e

x

sinx−I+c

2y=e

x

(sinx−cosx)+c

Since this curve passes through (0,0) therefore

2×0=e

0

(sin0cos0)+c

c=1

∴ equation of curve 2y=e

x

(sinx−cosx)+1

(2y−1)=e

x

(sinx−cosx)

Similar questions