Math, asked by deepusunkara6152, 4 months ago

Find the equation of a straight line passing through (-8,4) and making equal intercepts on the coordinate axes

Answers

Answered by amansharma264
36

EXPLANATION.

Equation of a straight lines passing through (-8,4).

making equal intercept on the co-ordinate axis.

As we know that,

Let we assume that x-intercept & y-intercept = t

equation of line,

⇒ x/a + y/b = 1.

We can write as,

⇒ x/t + y/t = 1.

⇒ -8/t + 4/t = 1.

⇒ -8 + 4 = t.

⇒ -4 = t.

Put the value of t = -4 in equation, we get.

⇒ x/-4 + y/-4 = 1.

⇒ x + y = -4.

⇒ x + y + 4 = 0.

                                                                                         

MORE INFORMATION.

Equation of straight lines parallel to axes.

(1) = Equation of x-axis ⇒ y = 0.

(2) = Equation of a line parallel to x-axes at a distance of b ⇒ y = b.

(3) = Equation of y-axis ⇒ x = 0.

(4) = Equation of a line parallel to y-axes and at a distance of a ⇒ x = a.

Answered by MrAnonymous412
41

 \\  \rm \large \underline{ \: Question :- } \\

Find the equation of a straight line passing through (-8,4) and making equal intercepts on the coordinate axes

 \\  \rm \large \underline{ \: Answer :- } \\

Let x - intercept and y intercept "a" , the equation of line is

 \\  \\  \mathsf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow  \:   \frac{x}{a}  +  \frac{y}{a}  = 1} \\  \\

 \\  \tt \: The \:  line \:  passed \:  through \:  the  \: point \:  (-8,4) \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \longrightarrow \:  \:  \:  \: \frac{( - 8)}{a}  +  \frac{4}{a}  \:  =  \: 1 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \longrightarrow \:  \:  \:  \: \frac{( - 8 + 4)}{a}  \:  =  \: 1 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \longrightarrow \:  \:  \:  \: \frac{( - 4)}{a}  \:  =  \: 1 \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \longrightarrow \:  \:  \:   \underline{\boxed{  \orange{\frak{ \: a  \:  =  \: ( - 4)}}}}\\  \\

 \\   \tt \: Therefore,  \: The \:  equation  \: of \:  line \:  is  \:  \\

 \\  \\  \mathsf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow  \:   \frac{x}{ - 4}  +  \frac{y}{ - 4}  = 1} \\  \\

 \\  \tt \:  \:  \:  \:  \:  \: Now, \:  multiple  \: whole  \: equation \:  by  \: (-4) \\

 \\  \\  \mathsf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow  \:   {x} +  {y} = { - 4}  } \\  \\

 \\  \\  \mathsf{\: \:  \therefore  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \underline { \boxed{ \orange { \frak{  \:   {x} +  {y}  + 4 = 0}}}}  } \\  \\

 \\   \\  \:  \:  \:  \:  \:  \:  \:  † \underline{  \: \bf \: The \:  equation \:  of \:  line \:  is \:  x \:  + \:  y \:  +  \: 4 \:  =  \: 0 \: \:  } \\  \\

Similar questions