Math, asked by luxmipanchal12438, 10 months ago

find the equation of circle the coordinates of end points of whose diameter are (a, b) and (c, d) ​

Answers

Answered by r5134497
2

The equation of required circle is:\left (x- \dfrac{a+c}{2}\right )^2 + \left (y- \dfrac{b + d}{2} \right )^2 =\left ( \dfrac{a-c}{2} \right )^2 + \left ( \dfrac{b-d}{2} \right )^2

Step-by-step explanation:

We know that;

  • The equation of circle :

                                        \left ( x-a \right )^2+\left ( y-b \right )^2 = r^2

Here, (a, b) is the coordinate of center and 'r' is the radius.

  • We are given the coordinates of end points of the diameter as (a,b) & (c,d).
  • From these coordinates, we can find out the coordinates of center.

Coordinates of center = \left ( \dfrac{a+c}{2},\dfrac{b+d}{2} \right )

Also, we can find out the radius.

  • r = \sqrt{\left ( \dfrac{a+c}{2} - a \right )^2 + \left ( \dfrac{b+d}{2} - b \right )^2}
  • r^2 = \left ( \dfrac{a+c}{2} - a \right )^2 + \left ( \dfrac{b+d}{2} - b \right )^2

Now, we can find out the equation of circle as:

\left (x- \dfrac{a+c}{2}\right )^2 + \left (y- \dfrac{b + d}{2} \right )^2 =\left ( \dfrac{a+c}{2} - a \right )^2 + \left ( \dfrac{b+d}{2} - b \right )^2

\left (x- \dfrac{a+c}{2}\right )^2 + \left (y- \dfrac{b + d}{2} \right )^2 =\left ( \dfrac{a-c}{2} \right )^2 + \left ( \dfrac{b-d}{2} \right )^2

This is the equation of required circle.

Attachments:
Similar questions