Math, asked by shivani018verma, 1 year ago

Find the equation of circle which passes through points (5,-8),(2,-9) and(2,1). Find also the coordinates of its centre and radius

Answers

Answered by MaheswariS
4

\textsf{Let the equation of the required circle be $x^2+y^2+2gx+2fy+c=0$}

\textsf{since the given circle passes through (5,-8), (2,-9) and (2,1), we have}

\mathsf{5^2+(-8)^2+2g(5)+2f(-8)+c=0}

\implies\mathsf{10g-16f+c=-89}........(1)

\mathsf{2^2+(-9)^2+2g(2)+2f(-9)+c=0}

\implies\mathsf{4g-18f+c=-85}........(2)

\mathsf{2^2+(1)^2+2g(2)+2f(1)+c=0}

\implies\mathsf{4g+2f+c=-5}........(3)

\mathsf{(1)-(2), gives}

\mathsf{10g-16f+c=-89}......(1)

\mathsf{4g-18f+c=-85}........(2)

\mathsf{6g+2f=-4}

\mathsf{3g+f=-2}........(4)

\mathsf{(2)-(3), gives}

\mathsf{4g-18f+c=-85}........(2)

\mathsf{4g+2f+c=-5}........(3)

\mathsf{-20f=-80}

\mathsf{g-f=-9}

\implies\mathsf{f=4}

\textsf{put f=4 in (4), we get}

\mathsf{3g+4=-2}

\mathsf{3g=-6}

\implies\mathsf{g=-2}

\textsf{put g=-2and f=4 in (3), we get}

\mathsf{4(-2)+2(4)+c=-5}

\implies\mathsf{c=-5}

\textsf{The equation of the required circle is}

\mathsf{x^2+y^2+2(-2)x+2(4)y-5=0}

\implies\boxed{\mathsf{x^2+y^2-4x+8y-5=0}}

\textsf{Its centre is (-g,-f)=(2,-4)}

\textsf{Radius}\mathsf{=\sqrt{g^2+f^2-c}}

\textsf{Radius,}\mathsf{=\sqrt{4+16+5}}

\textsf{Radius,}\mathsf{=\sqrt{25}}

\implies\textsf{Radius=5 units}

Find more:

Find the equation of the circle passing through the points (1,2),(3,-4)and (5,-6)find the centre and rafius in each case

https://brainly.in/question/5281562#

Similar questions