Math, asked by ashketchump6769, 11 months ago

Find the equation of locus of a point p which divides a segment aq internally i the ratio 2:5,where

Answers

Answered by labibhussain0
2

Step-by-step explanation:

α=

5+2

2x+5(3)

;β=

5+2

2y+5(−2)

\alpha=\dfrac{2x+15}{7} ; \beta=\dfrac{2y-10}{7}α=

7

2x+15

;β=

7

2y−10

+10}{2}}x

x=

2

7α−15

;y=

2

7β+10

...(1)

x^2+y^2-4x-12=0x

2

+y

2

−4x−12=0

\boxed{\Rightarrow (x-2)^2+y^2=16}

⇒(x−2)

2

+y

2

=16

...(2)

Using (1) and (2)

\left(\dfrac{7 \alpha -15}{2}-2\right)^2+\left(\dfrac{7\beta +10}{2}\right)^2=16(

2

7α−15

−2)

2

+(

2

7β+10

)

2

=16

\left(\dfrac{1 \alpha -19}{2}\right)^2 +\left(\dfrac{7 \beta +10}{2}\right)^2=16(

2

1α−19

)

2

+(

2

7β+10

)

2

=16

\Rightarrow \boxed{(7\alpha -19)^2+(7\beta +10)^2=64}⇒

(7α−19)

2

+(7β+10)

2

=64

\therefore ∴ The equation of P is of the form

\boxed{(7\alpha -19)^2+(7 \beta +10)^2=64}

(7α−19)

2

+(7β+10)

2

=64

Similar questions