Math, asked by shubham250742, 1 year ago

find the equation of tangent to the curve Y equal to x minus 7 upon x minus 2 x minus 3 at the point where it cuts the x axis​

Answers

Answered by MaheswariS
14

Answer:

Equation of tangent is x-20y-7=0

Step-by-step explanation:

Given curve is

y=\dfrac{x-7}{(x-2)(x-3)}

since it cuts the x axis, y=0

\implies\,\dfrac{x-7}{(x-2)(x-3)}=0

\implies\,x-7=0

\implies\,x=7

\therefore\text{The given curve cuts the x axis at (7,0)}

y=\dfrac{x-7}{x^2-5x+6}

Differtiate with respect to x

Applying quotient rule of diferentiation

\boxed{\bf\dfrac{dy}{dx}=\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}}

\dfrac{dy}{dx}=\dfrac{(x^2-5x+6).1-(x-7)(2x-5)}{(x^2-5x+6)^2}

\text{Slope of tangent, m}

=(\dfrac{dy}{dx})_(7,0)

=\dfrac{(7^2-5(7)+6).1-(7-7)(2(7)-5)}{(7^2-5(7)+6)^2}

=\dfrac{(7^2-5(7)+6)}{(7^2-5(7)+6)^2}

=\dfrac{1}{7^2-5(7)+6}

=\dfrac{1}{49-35+6}

=\dfrac{1}{20}

\text{Slope of tangent, m}=\dfrac{1}{20}

\textbf{Equation of tangent is }

y-y_1=m(x-x_1)

y-0=\dfrac{1}{20}(x-7)

y=\dfrac{1}{20}(x-7)

20y=(x-7)

\implies\boxed{\bf\,x-20y-7=0}

Similar questions