Math, asked by CherryF1223, 1 month ago

Find the equation of the bisector of the pair of acute angles formed by the lines 4x+2y=9 and 2x-y=8

Answers

Answered by Spssneka
0

Step-by-step explanation:

Plz add brainlist it is help for you

Attachments:
Answered by kingofself
0

Answer:

The Bisector of the pair of acute angles formed by the line 8x-25=0

Step-by-step explanation:

\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}    } }=± (\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}    } } )

4x+2y-9=0(a_{1} +b_{1} +c_{1}=0)

2x-y-8=0(a_{2}+b_{2}+c_{2})=0)

a_{1} a_{2} +b_{1}b_{2}=4(2)+2(-1))

8-1=7>0

\frac{a_{1}x+b_{1}y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}    } }=± (\frac{a_{2}x+b_{2}y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}    } } )

+ will give obtuse angle bisector

- will give acute angle bisector

\frac{4x+2{}y-9{}}{\sqrt{4{}^{2}+2_{1}^{2}    } }= -(\frac{2{}x+-1_{}y-8_{}}{\sqrt{2{}^{2}+(-1)_{}^{2}    } }

(4x+2y-9)/√16+4=-(2x-y-8/(√4+1))

4x+2y-9/√20=-(2x-y-8/√5)

4x+2y-9/2√5=-(2x-y-8)/√5

√5 gets cancel

4x+2y-9/2=-(2x-y-8)

4x+2y-9=-2(2x-y-8)

4x+2y-9=-4x+2y+16

4x+4x+2y-2y-9-16=0

8x-25=0

Similar questions