find the equation of the line passing through the point (1,4) and intersecting the line
![x - 2y - 11 = 0 x - 2y - 11 = 0](https://tex.z-dn.net/?f=x+-+2y+-+11+%3D+0)
on the y axis
THE FIRST ONE TO ANSWER WILL BE MARKED AS BRIANLIEST
Answers
Answered by
4
Given that point of intersection of lines x - 2y - 11 = 0 is (1,4).
Given that it lies on the y-axis.Then the x-axis will be 0.
Substitute x = 0 in the above equation, we get
0 - 2y - 11 = 0
-2y - 11 = 0
2y + 11 = 0
2y = -11
y = -11/2.
Hence the point of the y-axis is(0,-11/2).
Now,
The equation of the line passing through points is:
![\frac{y - y1}{x - x1} = \frac{y2 - y1}{x2 - x1} \frac{y - y1}{x - x1} = \frac{y2 - y1}{x2 - x1}](https://tex.z-dn.net/?f=+%5Cfrac%7By+-+y1%7D%7Bx+-+x1%7D+%3D++%5Cfrac%7By2+-+y1%7D%7Bx2+-+x1%7D+)
![\frac{y - 4}{x - 1} = \frac{ \frac{-11}{2} - 4}{0 - 1} \frac{y - 4}{x - 1} = \frac{ \frac{-11}{2} - 4}{0 - 1}](https://tex.z-dn.net/?f=+%5Cfrac%7By+-+4%7D%7Bx+-+1%7D+%3D++%5Cfrac%7B+%5Cfrac%7B-11%7D%7B2%7D+-+4%7D%7B0+-+1%7D+)
![\frac{y - 4}{x - 1} = \frac{2 * 4 + 11}{2} \frac{y - 4}{x - 1} = \frac{2 * 4 + 11}{2}](https://tex.z-dn.net/?f=+%5Cfrac%7By+-+4%7D%7Bx+-+1%7D+%3D++%5Cfrac%7B2+%2A+4+%2B+11%7D%7B2%7D+)
![\frac{y - 4}{x - 1} = \frac{19}{2} \frac{y - 4}{x - 1} = \frac{19}{2}](https://tex.z-dn.net/?f=+%5Cfrac%7By+-+4%7D%7Bx+-+1%7D+%3D++%5Cfrac%7B19%7D%7B2%7D+)
2y - 8 = 19x - 19
2y = 19x - 19 + 8
2y = 19x - 11
19x - 2y - 11 = 0
Therefore the equation of the line is 19x - 2y - 11 = 0.
Hope this helps!
Given that it lies on the y-axis.Then the x-axis will be 0.
Substitute x = 0 in the above equation, we get
0 - 2y - 11 = 0
-2y - 11 = 0
2y + 11 = 0
2y = -11
y = -11/2.
Hence the point of the y-axis is(0,-11/2).
Now,
The equation of the line passing through points is:
2y - 8 = 19x - 19
2y = 19x - 19 + 8
2y = 19x - 11
19x - 2y - 11 = 0
Therefore the equation of the line is 19x - 2y - 11 = 0.
Hope this helps!
siddhartharao77:
:-)
Similar questions