Math, asked by Anonymous, 1 year ago

find the equation of the lines which passes through the point (3, 4) and cuts off intercept from the coordinate axes such that their sun is 14

Answers

Answered by Anonymous
10
Hi

Here is your answer,

Let the intercept along the axes be a and b 

Given,                     a  + b = 14  →  b = 14 - a

Now, the equation of line is x/a + y/b = 1

                                        → x/a + y/14-a = 1

Since, the point (3,4) lies on the line.

                                 3/a + 4/14-a = 1 

   So, now 42 - 3a + 4a / a (14-a) = 1→ 42 + a = 14a - a²

     → a² - 13a + 42 = 0 → a²-7a - 6a + 42 = 0 

     → a (a - 7) - 6 (a-7) =0 

     → (a  - 7) ( a - 6) = 0 

      → a - 7 = 0 or a - 6 = 0 

         → a =7  or a =6 
       
  When,        → a = 7 then  b = 7

 When,       → a = 6 , then b = 8


 Therefore, the equation of line when, a = 7 and b = 7 is 

                                    x/7 + y/7 = 1 → x + y = 7


So, the equation of line , when a = 6 and b = 8 is x/6 + y/8 = 1 



Hope it helps you !



Anonymous: Thank you bhai
ABHAYSTAR: Mast answer
Answered by kvnmurty
4
Equation of a Line L with x and y intercepts = a & b respectively,

         x/a + y/b = 1     or,    a y + b x = ab       --- (1)

Given    a + b = 14    ---(2)
So equation (1) becomes:
    a y + (14 -a) x = a (14 - a) = 14 a - a²   ---(3)
                 
Since L passes through Point  P(3,4),
   a * 4 + (14 - a) 3 = 14 a - a²

=> a² - 13 a + 42 = 0
     (a - 6) (a - 7) = 0
=>  a = 6 or 7.
=>  b = 8 or 7.

Equation of lines are:   6 y + 8 x = 48  or, 3 y + 4 x = 24
           and                    7 x + 7 y = 49  or,  x + y = 7

There are two lines possible.

kvnmurty: :-)
ABHAYSTAR: Excellent answer sir
Anonymous: Splendid answer sir!
Similar questions