Math, asked by kowshal47, 10 months ago

Find the equation of the locus of a point,
the sum of whose distances from (0, 2)
and (0, -2) is 6.​

Answers

Answered by Sharad001
59

QuesTion :-

 \rm Find  \: the \:  equation  \: of \:  the  \: locus \:  of  \:  a \:  point \:  \\ </p><p> \rm the  \: sum  \: of  \: whose \:  distances  \:  from \:  (0, 2) \:  \\  \rm</p><p>and\:  (0, -2) \:  is \: 6 \: units.

Answer :-

\boxed{ \to \rm  \:  \frac{ {h}^{2} }{5}  +  \frac{ {k}^{2} }{9}  = 1 }\\  \\ \sf this \: is \: \: equation \: of \: an \: ellipse \:  \\

To Find :-

→ Equation of locus.

Solution :-

According to the question,

→ distance of the sum of distance A(0,2) and B(0,-2) from locus is 6 units .

Let P( h, k) point on locus .

According to the condition -

→ PA + PB = 6 units ...... eq.(1)

Firstly find the distance between P and A ,by distance formula -

 \boxed{ \rm \: D =  \sqrt{ {( x_2-x_1)}^{2}  +  {(  y_2-y_1)}^{2} } } \\  \\  \sf \: hence \:  \\ \rm distance \: between \: P( h, k)  \: and \: A(0,2) \: is -  \\  \\ \rm  PA =  \sqrt{ {(0 - h)}^{2} +  {(2 - k)}^{2}  }  \\  \\  \mapsto \rm PA =  \sqrt{ {h}^{2} +  {4} +  {k}^{2}   - 4k }  \:  \: eq....(2) \\  \\ \rm now \: calculate \: distance \: between \: P( h, k) \: and \: \\  \rm B(0,-2)  \:  \:  \\  \\  \mapsto \rm PB \:  =  \sqrt{ {(0 - h)}^{2}  +  {( - 2 - k)}^{2} }  \\  \\  \mapsto \rm PB =  \sqrt{ {h}^{2}  + 4 +  { {k}^{2} } + 4k }  \:  \:  \: eq...(3) \\  \\  \rm now \: put \: the \: value \:in \: eq.(1) \: from \: eq.(1) \: and  \\  \rm\: eq.(2) \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \rm \:PA + PB = 6  \: } \\  \therefore \\  \:  \\  \to\{ \rm  \sqrt{ {h}^{2} +  {4} +  {k}^{2}   - 4k } + \sqrt{ {h}^{2}  + 4 +  { {k}^{2} } + 4k } \} \\  \:  \:  \:  \:  \:  = 6 \:  \\  \\  \to \rm \sqrt{ {h}^{2} +  {4} +  {k}^{2}   - 4k } - 6 = \sqrt{ {h}^{2}  + 4 +  { {k}^{2} } + 4k }  \\  \\ \bf \red{ squaring \: on \: both \: sides} \\  \\  \to \rm  {h}^{2}  + 4 +  {k}^{2}  - 4k + 36 - 12\sqrt{ {h}^{2} +  {4} +  {k}^{2}   - 4k } \:  \\  \:  \:  \rm \:  \:  \:  \:  =  {h}^{2}  + 4 +  {k}^{2}  + 4k \\  \\ \rm  \to 36 - 8k = 12\sqrt{ {h}^{2} +  {4} +  {k}^{2}   - 4k } \:  \\  \\  \to \rm 3 -  \frac{2}{3} k = \sqrt{ {h}^{2} +  {4} +  {k}^{2}   - 4k } \:  \\  \\  \bf \green{again \: squaring \: on \: both \: sides} \\  \\  \to \rm { \bigg(3 -  \frac{2}{3} k \bigg)}^{2}  =  {h}^{2}  + 4 +  {k}^{2}  - 4k \\  \\  \to \rm 9 +  \frac{4}{9}  {k}^{2}  - 2 \times 3 \times  \frac{2}{3} k =  {h}^{2}  + 4 +  {k}^{2}  - 4k \\  \\  \to \rm 9  - 4k =  {h}^{2}  + 4 +  {k}^{2}  - 4k -  \frac{4}{9}  {k}^{2}  \\   \:

\to \rm  {h}^{2}  +  {k}^{2}  \bigg(1 -  \frac{4}{9}  \bigg) = 9 - 4 \\  \\  \to \rm \:  {h}^{2}  +   \frac{5}{9} {k}^{2}  = 5 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \to \rm  \:  \frac{ {h}^{2} }{5}  +  \frac{ {k}^{2} }{9}  = 1 }\\  \\ \sf this \: is \: \: equation \: of \: an \: ellipse \:  \\

Similar questions