Math, asked by jayarajender63, 10 months ago

find the equation of the locus of p A= (2 3) and B=( 2 - 3 ) and PA+PB =8​

Answers

Answered by riyanksapariya
2

Answer:

The required equation of the locus is 16x^2+7y^2-64x-48=016x

2

+7y

2

−64x−48=0

Step-by-step explanation:

Given : A=(2,3),B=(2,-3) and PA+PB=8

To find : The equation of the locus of P?

Solution :

A = (2,3) and B(2,-3).

Let P(x, y) be the moving points.

Given, PA+PB=8

Using distance formula,

D=\sqrt {(x_{ 1 }-x_{ 2 })^{ 2 }+(y_{ 1 }-y_{ 2 })^{ 2 }}D=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

PA=\sqrt{(2-x)^2+(3-y)^2}PA=

(2−x)

2

+(3−y)

2

PB=\sqrt{(2-x)^2+(-3-y)^2}PB=

(2−x)

2

+(−3−y)

2

Substitute,

PA=8-PBPA=8−PB

\sqrt{(2-x)^2+(3-y)^2}=8-\sqrt{(2-x)^2+(-3-y)^2}

(2−x)

2

+(3−y)

2

=8−

(2−x)

2

+(−3−y)

2

Squaring both side,

(2-x)^2+(3-y)^2=64+(2-x)^2+(-3-y)^2-16(\sqrt{(2-x)^2+(-3-y)^2})(2−x)

2

+(3−y)

2

=64+(2−x)

2

+(−3−y)

2

−16(

(2−x)

2

+(−3−y)

2

)

9+y^2-6y=64+9+y^2+6y-16(\sqrt{(2-x)^2+(-3-y)^2})9+y

2

−6y=64+9+y

2

+6y−16(

(2−x)

2

+(−3−y)

2

)

-12y=64-16(\sqrt{(2-x)^2+(-3-y)^2})−12y=64−16(

(2−x)

2

+(−3−y)

2

)

64+12y=16(\sqrt{(2-x)^2+(-3-y)^2})64+12y=16(

(2−x)

2

+(−3−y)

2

)

16+3y=4(\sqrt{(2-x)^2+(-3-y)^2})16+3y=4(

(2−x)

2

+(−3−y)

2

)

Again Squaring both side,

(16+3y)^2=16((2-x)^2+(-3-y)^2))(16+3y)

2

=16((2−x)

2

+(−3−y)

2

))

256+9y^2+96y=16(4+x^2-4x+9+y^2+6y)256+9y

2

+96y=16(4+x

2

−4x+9+y

2

+6y)

256+9y^2+96y=208+16x^2-64x+16y^2+96y256+9y

2

+96y=208+16x

2

−64x+16y

2

+96y

16x^2+7y^2-64x-48=016x

2

+7y

2

−64x−48=0

Therefore, The required equation of the locus is 16x^2+7y^2-64x-48=016x

2

+7y

2

−64x−48=0

Similar questions