Math, asked by khushipandey1603, 2 months ago

Find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1,4,2) and(2,3,5).Also find the perpendicular distance of the plane from the origin.​

Answers

Answered by jagdeep378
0

Answer:

4x+5y+7z-58=0

4x+5y+7z-58=0

The required plane is

Step-by-step explanation:

The normal vector to the plane 2x-3y+z-2=0 is

2\vec{i}-3\vec{j}+\vec{k}

2\vec{i}-3\vec{j}+\vec{k}

The normal vector to the plane 4x+y-3z+1=0 is

4\vec{i}+\vec{j}-3\vec{k}

4\vec{i}+\vec{j}-3\vec{k}

Hence the required plane passes through the point (2,3,.5) and parallel to the vectors

2\vec{i}-3\vec{j}+\vec{k}

2\vec{i}-3\vec{j}+\vec{k}

4\vec{i}+\vec{j}-3\vec{k}

4\vec{i}+\vec{j}-3\vec{k}

and

Equation of the required plane is

\begin{gathered}|\begin{array}{ccc}x-x_1&y-y_1&z-z_1\\l_1&m_1&n_1\\l_2&m_2&n_2\end{array}|=0\end{gathered}

\begin{gathered}|\begin{array}{ccc}x-x_1&y-y_1&z-z_1\\l_1&m_1&n_1\\l_2&m_2&n_2\end{array}|=0\end{gathered}

\begin{gathered}|\begin{array}{ccc}x-2&y-3&z-5\\2&-3&1\\4&1&-3\end{array}|=0\end{gathered}

\begin{gathered}|\begin{array}{ccc}x-2&y-3&z-5\\2&-3&1\\4&1&-3\end{array}|=0\end{gathered}

Similar questions