Find the equation of the right bisector of the line segment joining the points (3,4) and (-1,2)
Answers
Answered by
8
hey mate!
I hope it will help you!
Attachments:
Answered by
9
Given:-
- The right bisector of the line segment.
- The point (3, 4) and (-1, 2)
To find:-
- Find the equation..?
Solutions:-
- The right bisector of a line segment bisects the line segment at 90°
- The end - point of the line segment are given as A (3, 4) and B (-1, 2).
Accordingly,
- Mid - point of AB
=> AB = (3 - 1 /2, 4 + 2 /2)
=> AB = (1, 3)
Therefore,
Slope of the line perpendicular to AB = -1/(1/2) = -2
The equation of the line passing through (1, 3) and having a slope of -2 is.
=> (y - 3) = -2(x - 1)
=> y - 3 = -2x + 2
=> 2x + y = 5
Hence, the required equation of the line is 2x + y = 5.
Similar questions