Math, asked by pragati01, 1 year ago

Find the equation of the right bisector of the line segment joining the points (3,4) and (-1,2)​

Answers

Answered by pankajkumar66
8

hey mate!

I hope it will help you!

Attachments:
Answered by silentlover45
9

Given:-

  • The right bisector of the line segment.
  • The point (3, 4) and (-1, 2)

To find:-

  • Find the equation..?

Solutions:-

  • The right bisector of a line segment bisects the line segment at 90°

  • The end - point of the line segment are given as A (3, 4) and B (-1, 2).

Accordingly,

  • Mid - point of AB

=> AB = (3 - 1 /2, 4 + 2 /2)

=> AB = (1, 3)

Therefore,

Slope of the line perpendicular to AB = -1/(1/2) = -2

The equation of the line passing through (1, 3) and having a slope of -2 is.

=> (y - 3) = -2(x - 1)

=> y - 3 = -2x + 2

=> 2x + y = 5

Hence, the required equation of the line is 2x + y = 5.

Similar questions