find the equation of the set of points which are equidistant from the points (1,2,3) and (3,2,-1)
Answers
Answered by
11
Assumption
T(x,y,z)
This is the point equidistant from points P(1,2,3) and Q(3,2,-1)
We have
TP = TQ
Hence,
TP² = TQ²
(x - 1)² + (y - 2)² + (z - 3)² = (x - 3)² + (y - 2)² + (z + 1)²
Using Identity
Hence,
x² - 2x + 1 + y² - 4y + 4 + z² - 6z + 9 = x² - 6x + 9 + y² - 4y + 4 + z² + 2z + 1
⇒ -2x - 4y - 6z + 14 = -6x - 4y + 2z + 14
⇒ -2x - 6z + 6x - 2z = 0
⇒ 4x - 8z = 0
⇒ 4(x - 2z) = 0
⇒ x - 2z = 0
Similar questions