Math, asked by rikisharmarinki2018, 1 month ago

find the equation of the straight line passing through the origin and dividing the segment of the straight line joining (4,-2) and (1,10) internally in the ratio 2:1 ​

Answers

Answered by MysticSohamS
17

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ equation \: of \: straight \: line \\  \\ so \: here \\ as \: the \: straight \: line \: passes \: through \:  \\ origin \\ let \: then \\ (x1,y1) = (0,0)

moreover \: this \: line \: divides \: certain \\ segment \: in \: ratio \: 2 : 1 \\ so \: let \: it \: divide \: in \: ratio \\ m : n = 2 : 1 \\  \\ moreover \: let \: here \\ (a1,b1) = (4, - 2) \\  \\ (a2,b2) = (1,10) \\  \\ so \: by \: \: applying \:  \\  section \: formula \\ we \: get \\  \\ x =  \frac{ma2 + na1}{m + n}  \:  \: ,y =  \frac{mb2 + nb1}{m + n}  \\  \\  =  \frac{(2 \times 1) + (1 \times 4)}{2 + 1}  \:  \: , \:  =  \frac{(2 \times 10) + (1 \times ( - 2))}{1 + 2}  \\  \\  =  \frac{2 + 4}{3}  \:  \: , \:  =  \frac{20 - 2}{3}  \\  \\  =  \frac{6}{3}  \: , \:  =  \frac{18}{3}  \\  \\  = (x,y) = (2,6) \\  \\ let \: then \\  \\ (x2,y2) = (2,6)

so \: we \: know \: that \\ two - points \: equation \: of \:  \\ straight \: line \: is \: given \: by \\  \\  \frac{y - y1}{y1 - y2}  =  \frac{x - x1}{x1 - x2}  \\  \\  \frac{y - 0}{0 - 6}  =  \frac{x - 0}{0 - 2}  \\  \\  =  \frac{y}{ - 6}  =  \frac{x}{ - 2}  \\  \\  - 2y =    - 6x \\  \\ 6x - 2y = 0 \\  \\ 2(3x - y) = 0 \\  \\ 3x - y = 0 \\  \\ or \\  \\ y = 3x

hence \: required \: equation \: of \\ straight \: line \: is \:  \\ 3x - y = 0

Similar questions