Math, asked by nagalaxmi94, 5 months ago

Find the equation to the locus of points
equidistant from the points.
i) (a + b, a - b), (a - b, a + b)
please answer fast ..... don't spam....​

Answers

Answered by krishnagoud251074
0

Step-by-step explanation:

Let the point be P(x,y)

Then

√(x−(a+b))²+(y−(a−b))²= √(x−(a−b))²+(y−(a+b))²

(x−(a+b))²+(y−(a−b))²=(x−(a−b))²+(y−(a+b))²

(x−(a+b))²−(x−(a−b))²

=(y−(a+b))² −(y−(a−b))²

(2x−2a)(a−b−(a+b))=(2y−2a)(a−b−(a+b))

2(x−a)(−2b)=2(y−a)(−2b)

x−a=y−a (or) x−y=0

is the required equation

Similar questions