Math, asked by keerthisaibabu1, 9 months ago

find the equation to the pair of tangents drawn from (0,0) to the circle x² + y2 + 10x + 10y + 40 = 0.​

Answers

Answered by senboni123456
7

Step-by-step explanation:

We know, equation of tangents in slope form given by

(y + f) = m(x + g) ± √(g² + f² - c) √(1 + m²)

 {x}^{2}  +  {y}^{2}  + 10x + 10y + 40 = 0

Here, g = 5, f = 5 and the tangents passes through (0 , 0), so,

(0+5) = m(0 + 5)  +-  \sqrt{(25 + 25  -  40)(1 +  {m}^{2}) }

 =  > 5 - 5m =  +  -  \sqrt{10(1 +  {m}^{2}) }

 =  > 25 + 25 {m}^{2}  - 50m =10(1 +  {m}^{2} )

 =  > 15 {m}^{2}  - 50m + 15 = 0

 =  > 3 {m}^{2}  - 10m + 3 = 0

 =  > 3 {m}^{2}  - 9m - m + 3 = 0

 =  > 3m(m - 3) - 1(m - 3) = 0

 =  > m = 3 \:  \: or \:  \: m =  \frac{1}{3}

So, required equations are

  • When m = 3 :

y + 5 = 3(x + 5) +  \sqrt{10(1 + 9)}

 =  > (y + 5) = 3(x + 5) + 10

 =  > 3x - y + 20 = 0

  • When m = 1/3 :

y + 5 =  \frac{1}{3} (x + 5) -  \sqrt{10(1 +  \frac{1}{9}) }

 = >  y + 5 =  \frac{x}{3}  +  \frac{5}{3}  -  \frac{10}{3}

 =  > 3y + 15 = x - 5

 =  > x - 3y - 20 = 0

Similar questions