Find the equation whose roots are 0,1,-3/2,-5/2
Hint:- Use the above formula
(x-0)(x-1)(x-3/2)(x-5/2) allready inserted in the formula just simply it and find the equation
Answers
Answer:
A quadratic is a polynomial that (when simplified) can be written in the form: Ax^2 + Bx + C where A can not = 0. If it is a quadratic equation, then it would be: Ax^2 + Bx + C = 0. So what does all that mean... a quadratic is a polynomial that has 1, 2 or 3 terms, but the highest degree term will have a variable that is squared.
There are many polynomials that are not quadratics. For example: 3x + 7 = 0 is a polynomial equation. However, it can not be written in the form Ax^2 + Bx + C =0 because there is no "x^2" term. Thus, it is not a quadratic. Instead, 3x + 7 = 0 is a simple linear equation (or 1st degree equation) that can be solved without using quadratic methods
2nd example: x^3 + 5x^2 + 6 =0 is a 3rd degree polynomial equation, however it is not a quadratic because the highest degree term is x^3 (not x^2). You will learn that equations like this can sometimes be solved using a combination of quadratic methods (e.g., factoring is used to get down to a lower degree: X ( X^2 + 5X + 6) = 0. We now have 2 factors, where one is a quadratic and you could use an appropriate quadratic method to solve that factor).
Hope this helps.
Please mark as brainliest.
Answer:
Your answer is in the attachment.