Find the equations of the circles passing through (1, -1)and touching the lines
4x + 3y + 5 = 0 and 3x – 4y – 10 = 0
Answers
Answered by
3
Answer:
hey!
y=c-3x is the tangent to a circle: x^2+y^2-4x-2y-5=0
x^2+(c-3x)^2 -4x-2(c-3x)-5 =0
x^2+9x^2-6cx+c^2 -4x-2c+6x-5 =0
10x^2+(2-6c)x+c^2-2c-5 =0
has only one solution (tangent)if:
(2-6c)^2-4(10)(c^2-2c-5) = 0
-4c^2+56c+204 =0
c^2-14c-51 =0
c = (14+20)/2 or c = (14-20)/2
Answer: c =17 or c = -3
hope it will be helpful ✌️
Answered by
3
Answer:
heya friend
here is your answer
===========================
let,
3x-4y = 10 ----------> {1}
4x+3y = 5 ------------> {2}
{1} × 3 = 9x - 12y = 30
{2} ×4 = 16x + 12y = 20
====================
= 25x = 50
x = 50/25
x = 2
therefore , x = 2
now place x in eq 1
(3×2) - 4y = 10
6 - 4y = 10
-4y = 4
y = (-1)
sho ,
x = 2
y = (-1)
i hope it helped uh !!
thanks
Similar questions