Math, asked by linasaha54, 6 months ago

Find the equations of the tangents to the hyperbola
3x^2 - 4y^2 = 12, which are inclined at an angle 60° to X axis ? ( using Calculus)​

Answers

Answered by Anonymous
43

Step-by-step explanation:

 \tt  \huge\color{blue}Solution: -

 \tt  \frac{ {3x}^{2} }{12}  -   \frac{ {4y}^{2} }{12}  =  \frac{12}{12}  \\  \\  \\  \tt  \frac{ {x}^{2} }{4}  -  \frac{ {4}^{2} }{3}  = 1 \\  \\  \\  \tt  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {4}^{2} }{3}  = 1 \\  \\  \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \: {a}^{2}  = 4 \\  \\  \\  \tt  \:  \:  \:  \:  \:  \:  \:  \:  \:  {b}^{2}  = 3 \\  \\  \\   \boxed{\tt equation \:  \: of \:  \: langent \:  \: to \:  \: hyperbola} \\  \\  \\  \tt y = mx ± \sqrt{ {a}^{2} {m}^{2}   -  {b}^{2} }  \\  \\  \\  \\  \tt m = tan \: 60° \\  \\  \\  \tt  :  \implies  \sqrt{3}  \\  \\  \\  \tt y =  \sqrt{3x} ±  \sqrt{3x4 - 3}  \\  \\  \\  \tt y =  \sqrt{3x} ±  \sqrt{9} \\  \\  \\  \tt y =  \sqrt{3x} ± 3

Similar questions