English, asked by Anonymous, 4 months ago

Find the equivalent resistance for 20ohm 15ohm and 20ohm parallel conecetion​

Answers

Answered by ItzCaptonMack
6

\huge\mathtt{\fbox{\red{Answer✍︎}}}

GIVEN :-

Three resistors of 20Ω , 15Ω , 20Ω.

TO FIND :-

The equivalent resistance.

SOLUTION :-

Let R₁ be 20Ω R₂ be 15Ω R₃ be 20Ω.

Now as we know that , when the resistors are connected in parallel combination then their equivalent resistance is given by,

 \\  :  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =  \frac{1}{R_1}  +  \frac{1}{R_2}  +  \frac{1}{R_3}  + ... +  \frac{1}{R_n}  \\  \\  \\

  :  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =  \frac{1}{20}  +  \frac{1}{15}  +  \frac{1}{20}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{3 + 4 + 3}{60}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{10}{60}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{1}{R_{eq}}   =   \frac{1}{6}  \\  \\  \\

:  \implies \displaystyle  \underline{ \boxed{\sf \bold{ \:  {R_{eq}}   =  6 \:  \Omega}}}

Answered by Anonymous
3

GIVEN :-

Three resistors of 20Ω , 15Ω , 20Ω.

TO FIND :-

The equivalent resistance.

SOLUTION :-

Let R₁ be 20Ω R₂ be 15Ω R₃ be 20Ω.

Now as we know that , when the resistors are connected in parallel combination then their equivalent resistance is given by,

⟹R\\ \begin{gathered} : \implies \displaystyle \sf \: \frac{1}{R_{eq}} = \frac{1}{20} + \frac{1}{15} + \frac{1}{20} \\ \\ \\ \end{gathered}: {\green\implies \displaystyle \sf \: \frac{1}{R_{eq}} = \frac{3 + 4 + 3}{60} \\ \\ \\ \end{gathered}:\\ \begin{gathered}: \implies \displaystyle \sf \: \frac{1}{R_{eq}} = \frac{10}{60} \\ \\ \\ \end{gathered}:\\ \begin{gathered}: \implies \displaystyle \sf \: \frac{1}{R_{eq}} = \frac{1}{6} \\ \\ \\ \end{gathered} \\ : \implies \displaystyle \underline{ \boxed{\sf \bold{ \: {R_{eq}} = 6 \: \text{\O}mega}}}: \\

Similar questions