Physics, asked by sjay80079, 5 months ago

Find the equivalent resistance of three resistors of 5r, 10r and 30r connected in parallel.

Answers

Answered by Anonymous
9

Answer :-

Given :-

  • \sf R_1 = 5r
  • \sf R_2 = 10r
  • \sf R_3 = 30r

To Find :-

  • Equivalent resistance

Solution :-

For the parallel combination :-

\implies\sf \dfrac{1}{R_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}

Substituting the values -

\implies\sf \dfrac{1}{r_{eq}} = \dfrac{1}{5r} + \dfrac{1}{10r} + \dfrac{1}{30r}

\implies\sf \dfrac{1}{r_{eq}} = \dfrac{6}{30r} + \dfrac{3}{10r} + \dfrac{1}{30r}

\implies\sf \dfrac{1}{r_{eq}} = \dfrac{6 + 3 + 1}{30r}

\implies\sf \dfrac{1}{r_{eq}} = \dfrac{10}{30r}

\implies\sf \dfrac{1}{r_{eq}} = \dfrac{1}{3r}

\implies\sf r_{eq} = 3r

So, the equivalent resistance of three resistors of 5r, 10r and 30r connected in parallel is 3r.

Answered by itzHitman
8

✪ Given :-

 \:  \:  \:  \:  \:  \:  \: ➵ \: R1 = 5r

 \:  \:  \:  \:  \:  \:  \: ➵R2 \:  = 10r

 \:  \:  \:  \:  \:  \:  \: ➵R3 \:  = 30r

✪ To Find :-

☞ Equivalent Resistance

✪ Solution:-

For Parallel Combination :-

➠ \:  \frac{1}{Req}  =  \frac{1}{R1} +  \frac{1}{R2}  +  \frac{1}{  R3}

For Substituting the value :-

</p><p></p><p>➠ \: \sf \dfrac{1}{r_{eq}} = \dfrac{1}{5r} + \dfrac{1}{10r} + \dfrac{1}{30r}</p><p></p><p>

</p><p></p><p>➠ \: \sf \dfrac{1}{r_{eq}} = \dfrac{6}{30r} + \dfrac{3}{10r} + \dfrac{1}{30r}</p><p></p><p>

</p><p></p><p></p><p>➠ \: \sf \dfrac{1}{r_{eq}} =  \frac{6 + 3 + 1}{30r} </p><p></p><p></p><p></p><p>

➠ \frac{1}{</p><p>req</p><p>}  =  \frac{10}{30r}

➠ \frac{1}{</p><p>r eq</p><p>}  =  \frac{1}{3r}

➠req = 3r

Therefore ,The Equivalent of three resistors of 5r ,10r ,and 30r Connected in Parallel is 3r

Similar questions