Math, asked by himanshukashyap2313, 1 month ago

Find the equlation of the cricle passing through the point (1,2)and having its center at (2,3).​

Answers

Answered by amansharma264
4

EXPLANATION.

Equation of a circle passing through point (1,2).

Having a Centre = (2,3).

As we know that,

Formula of Equation of circle.

The equation of a circle having Centre (h, k) and radius r, is.

⇒ (x - h)² + (y - k)² = r².

We can write equation as,

Centre = (2,3) = (h, k).

⇒ (x - 2)² + (y - 3)² = r².

⇒ (1 - 2)² + (2 - 3)² = r².

⇒ (-1)² + (-1)² = r².

⇒ 1 + 1 = r².

⇒ r² = 2.

Now, we can write equation as,

⇒ (x - 2)² + (y - 3)² = r².

⇒ (x - 2)² + (y - 3)² = 2.

⇒ x² + 4 - 4x + y² + 9 - 6y = 2.

⇒ x² + y² - 4x - 6y + 13 = 2.

⇒ x² + y² - 4x - 6y + 13 - 2 = 0.

⇒ x² + y² - 4x - 6y + 11 = 0.

                                                                                                                 

MORE INFORMATION.

The parametric equation of a circle.

(1) = The parametric equation of a circle x² + y² = r² are x = r cosθ, y = r sinθ.

(2) = The parametric equation of the circle (x - h)² + (y - k)² = r² are x = h + r cosθ, y = k + r sinθ.

(3) = Parametric equations of a circle x² + y² + 2gx + 2fy + c = 0 are x = - g + √g² + f² - c cosθ , y = - f + √g² + f² - c sinθ.

Similar questions