Find the expected number of events required to get three consecutive sixes on a dice, given that first two outcomes are two sixes
Answers
Answered by
1
E_(n+1) = E_n + 1/6 * 1 + 5/6 *(1 + E_(n+1))
E_(n+1)/6 = E_n + 1
E_(n+1) = 6 (E_n + 1)
So E_0 = 0, E_1 = 6, E_2 = 42, E_3 = 258...
Thanks
Similar questions
Chemistry,
7 months ago
Math,
7 months ago
Accountancy,
7 months ago
Social Sciences,
1 year ago
English,
1 year ago
Chemistry,
1 year ago
Environmental Sciences,
1 year ago
Economy,
1 year ago