Math, asked by harpreet7120, 10 months ago

Find the extreme values of 3sin^2x+5cos^2x

Answers

Answered by amitnrw
6

Given : 3sin²x+5cos²x  

To Find : extreme values

Solution:

3sin²x+5cos²x

= 3sin²x + 5(1 - sin²x)

=  3sin²x + 5 - 5 sin²x

= 5 - 2 (sin²x)

sin²x minimum value  = 0

Hence

5 - 0 = 5  Max Value

sin²x maximum value  = 1

Hence 5 - 2 = 3  is Minimum Value

extreme values are  3   &  5

A = 3sin²x+5cos²x  

dA/dx = 6Sinxcosx + 10 Cos(-sinx)

=> dA/dx =   - 4sinxcosx

=> dA/dx = - 2Sin2x

dA/dx  = 0

=> - 2Sin2x = 0

=> x = 0  ,   x = π/2

d²A/dx² =  -4Cos2x  

d²A/dx² = -4  < 0 at x = 0  hence maximum value

=  3sin²0+5cos²0

= 0 + 5

= 5

d²A/dx² =  4 > 0   at  x = π/2  hence minimum value

=   3sin²90+5cos²90

= 3  + 0

= 3

Extreme values are 5 & 3

Learn More:

Find the maximum and minimum values of sin 2x - cos 2x - Brainly.in

https://brainly.in/question/7029769

Attachments:
Answered by tummakeerthana19
9

Answer:

hope it helps you and don't forget to follow mè

Attachments:
Similar questions