Math, asked by vinupatil480, 3 months ago

Find the factor from z²+ 1/z + 2 - 2z - 2/z is​

Answers

Answered by Prativa54321
0

Answer:

1/z

Step-by-step explanation:

please give me brainlyest

,,.

Answered by plrohit2008
0

Answer:

(z + \frac{1}{z} - 2) (z + \frac{1}{z})

Step-by-step explanation:

[FIRST SQUARE (z + \frac{1}{z}) USING IDENTITY ]

(z + \frac{1}{z})² = z² + \frac{1}{z^{2} } + 2

[NOW (- 2z - \frac{2}{z}) IS MISSING, SO ADD THEM BOTH THE SIDES]

⇒ (z + \frac{1}{z}) × (z + \frac{1}{z}) - 2z - \frac{2}{z} =  z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

⇒ (z + \frac{1}{z}) × (z + \frac{1}{z}) - 2(z + \frac{1}{z}) = z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

[ HERE z + \frac{1}{z} AND - 2 ARE COMMON]

⇒ (z + \frac{1}{z} - 2) (z + \frac{1}{z}) = z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z}

HENCE FACTORS OF  z² + \frac{1}{z^{2} } + 2 - 2z - \frac{2}{z} ARE ⇒

(z + \frac{1}{z} - 2) (z + \frac{1}{z})

THANK YOU

Similar questions