Math, asked by sunny1076, 10 months ago

Find the first negative number in ap : 14,11,8

Answers

Answered by Anonymous
2

Answer:

\large{\boxed{\green{\mathcal{Answer-}}}}

AP : 14 , 11 , 8

HERE ,

A = 14 , D = -3

TO FIND :

THE FIRST NEGATIVE TERM IN THE AP.

PROOF :

ACCORDING TO THE AP.

WE GET ,

14 - 3 = 11

11 - 3 = 8

8 - 3 = 5

5 - 3 = 2

2 - 3 = -1

THE FIRST NEGATIVE TERM IN THE AP. IS -1 .

\large{\boxed{\</u></em></strong><strong><em><u>b</u></em></strong><strong><em><u>l</u></em></strong><strong><em><u>u</u></em></strong><strong><em><u>e</u></em></strong><strong><em><u>{\mathcal{</u></em></strong><strong><em><u>H</u></em></strong><strong><em><u>O</u></em></strong><strong><em><u>P</u></em></strong><strong><em><u>E</u></em></strong><strong><em><u> </u></em></strong><strong><em><u> </u></em></strong><strong><em><u>T</u></em></strong><strong><em><u>H</u></em></strong><strong><em><u>A</u></em></strong><strong><em><u>T</u></em></strong><strong><em><u> </u></em></strong><strong><em><u>H</u></em></strong><strong><em><u>E</u></em></strong><strong><em><u>L</u></em></strong><strong><em><u>P</u></em></strong><strong><em><u>S</u></em></strong><strong><em><u>-}}}}

Answered by Anonymous
30

Question:

Find the first negative number in ap : 14,11,8

Theory :

{\purple{\boxed{\large{\bold{a _{n} = a + (n - 1)d}}}}}

Solution :

Given Ap series:

14,11,8.....

In this series ;

first term ,a = 14

common difference ,d = 11-14 = -3

_________________________

we have to find first negative term in the given AP series .

⇒ The value of a+(n-1) d < 0

a+(n-1)d < 0

⇒ 14 + (n-1) -3 < 0

⇒14-3n +3 <0

⇒ 17 - 3n <0

⇒3n <17

 n &lt;  \frac{17}{3}

as n is a integer, the first value which satisfies the above condition is n = 6

Now,

 a _{6} = a + (6- 1)d

 a _{6} = 14+ (6- 1)-3

 a _{6} = 14 -18 +3

 a _{6} = -1

__________________________

Therefore first negative no is -1

Similar questions