Find the following squares by using the identities
Attachments:
Answers
Answered by
9
1) (a-b) = a^2 + 2ab + b^2
(b-7) = b^2 - 2(b)(7) + 7^2
= b^2 - 14b + 49
2) (a+b)^2 = a^2 + 2ab+ b^2
(xy + 3z )^2 = xy^2 + 2(xy)(3z) + 3z^2
= xy^2 + 6xyz + 9z^2
3) (a+b) (a-b) = a^2 - b^2
(6x^2 - 5y^2 ) = (6x)^2 - (5y)^2
= 36x^2 - 25y^2
4) (a+b) = a^2 + 2ab + b^2
(2/3 m + 3/2n)^2 = (2/3 m)^2 + 2(2/3 m)(3/2 n) + (3/2 n)^2
= 4/9 m^2 + 2mn + 9/4 n^2
5) (a-b)^2 = a^2 - 2ab + b^2
(0.4p - 0.5q)^2 = (0.4p)^2 - 2(0.4p)(0.5q) + (0.5q)^2
= 0.16 p^2 - 0.4pq + 0.25 q^2
6) (a+b)^2 = a^2 + 2ab + b^2
(2xy + 5y)^2 = (2xy)^2 + 2(2xy)(5y) + (5y)^2
= 4x^2y^2 + 20xyz + 25 y^2
I done by my own
I hope it will help you
(b-7) = b^2 - 2(b)(7) + 7^2
= b^2 - 14b + 49
2) (a+b)^2 = a^2 + 2ab+ b^2
(xy + 3z )^2 = xy^2 + 2(xy)(3z) + 3z^2
= xy^2 + 6xyz + 9z^2
3) (a+b) (a-b) = a^2 - b^2
(6x^2 - 5y^2 ) = (6x)^2 - (5y)^2
= 36x^2 - 25y^2
4) (a+b) = a^2 + 2ab + b^2
(2/3 m + 3/2n)^2 = (2/3 m)^2 + 2(2/3 m)(3/2 n) + (3/2 n)^2
= 4/9 m^2 + 2mn + 9/4 n^2
5) (a-b)^2 = a^2 - 2ab + b^2
(0.4p - 0.5q)^2 = (0.4p)^2 - 2(0.4p)(0.5q) + (0.5q)^2
= 0.16 p^2 - 0.4pq + 0.25 q^2
6) (a+b)^2 = a^2 + 2ab + b^2
(2xy + 5y)^2 = (2xy)^2 + 2(2xy)(5y) + (5y)^2
= 4x^2y^2 + 20xyz + 25 y^2
I done by my own
I hope it will help you
Ajit1111111:
thanks
Similar questions
Hindi,
8 months ago
Social Sciences,
8 months ago