find the Fourier series of function f(x)=(π-x)
Answers
Answered by
2
Answer:
Step-by-step explanation:
f(x)=π−xx∈[0,2π[
a0=1π ∫2π0f(x) dx=1π ∫2π0(π−x) dx=0
an=1π ∫2π0cos(nx) dx=1π ∫2π0(π cos(nx)−x cos(nx)) dx=
1π ( [πn sin(nx)]2π0−[xn sin(nx)+1n2 cos(nx)]2π0)=0
bn=1π ( [ −πn cos(nx)]2π0−[−xn cos(nx)+1n2 sin(nx)]2π0)=2n
f(x)=2∑n=1+∞1n sin(nx)
Similar questions