Math, asked by rajnikantdubey312, 4 months ago

Find the Fourier sine transform of - 2e^-3x + 3e^-2x​

Answers

Answered by raghakeshini05
0

Answer:

he Fourier sine transform is the imaginary part of the full complex Fourier transform,

F_x^((s))[f(x)](k) = I[F_x[f(x)](k)]  

(1)

= int_(-infty)^inftysin(2pikx)f(x)dx.  

(2)

The Fourier sine transform F_s(k) of a function f(x) is implemented as FourierSinTransform[f, x, k], and different choices of a and b can be used by passing the optional FourierParameters -> {a, b} option. In this work, a=0 and b=-2pi.

Step-by-step explanation:

Answered by talasilavijaya
0

Answer:

The Fourier sine transform of the given function is

\sqrt{\dfrac{2}{\pi } }\bigg[{{\dfrac{3s}{4 +s^{2} }-\dfrac{2s}{9 +s^{2} } } }} }\bigg]

Step-by-step explanation:

Given a function  

f(x)=-2e^{-3x} + 3e^{-2x}\\

The Fourier sine transform of a function is given by,

F_s[f(x)]=\sqrt{\dfrac{2}{\pi } }${\displaystyle \int\limits^{\infty}_0 {f(x)sinsx } \, dx

Therefore, for the given function, the Fourier sine transform is

F_s[f(x)]=\sqrt{\dfrac{2}{\pi } } ${\displaystyle\int\limits^{\infty}_0 {\big(-2e^{-3x} + 3e^{-2x}\big)sinsx } \, dx

             =\sqrt{\dfrac{2}{\pi } }\bigg[ ${\displaystyle\int\limits^{\infty}_0 {-2e^{-3x} sinsx } \, dx~+${\displaystyle\int\limits^{\infty}_0 { 3e^{-2x}sinsx } \, dx\bigg]

             =-2\sqrt{\dfrac{2}{\pi } }${\displaystyle\int\limits^{\infty}_0 {e^{-3x} sinsx } \, dx~+3\sqrt{\dfrac{2}{\pi } }${\displaystyle\int\limits^{\infty}_0 { e^{-2x}sinsx } \, dx

Using the integral,

{\displaystyle\int {e^{ax} sinbx } \, dx~={\dfrac{e^{ax}}{a^{2} +b^{2} } (a sinbx -bcosbx)} }

F_s[f(x)]= -2\sqrt{\dfrac{2}{\pi } }\bigg[{\dfrac{e^{-3x}}{(-3)^{2} +s^{2} } (-3 sinsx -scossx)} ~}\bigg]\limits^{\infty}_0 \\~~~~~~~~~~~~~~~~~~~~~~~+3\sqrt{\dfrac{2}{\pi } }\bigg[{\dfrac{e^{-2x}}{(-2)^{2} +s^{2} } (-2 sinsx -scossx)} ~}\bigg]\limits^{\infty}_0

Since, e^{\infty}}=0 and e^{0}=1, we get

F_s[f(x)]=-2\sqrt{\dfrac{2}{\pi } }\bigg[{[0]-\dfrac{1}{9 +s^{2} } (-s)} ~}\bigg] +3\sqrt{\dfrac{2}{\pi } }\bigg[{[0]-\dfrac{1}{4 +s^{2} } (-s)} ~}\bigg]

            =-2\sqrt{\dfrac{2}{\pi } }\bigg[{\dfrac{s}{9 +s^{2} } } }\bigg] +3\sqrt{\dfrac{2}{\pi } }\bigg[{\dfrac{s}{4 +s^{2} }} }\bigg]

            =\sqrt{\dfrac{2}{\pi } }\bigg[{\dfrac{-2s}{9 +s^{2} } } }+{\dfrac{3s}{4 +s^{2} }} }\bigg]

           =\sqrt{\dfrac{2}{\pi } }\bigg[{{\dfrac{3s}{4 +s^{2} }-\dfrac{2s}{9 +s^{2} } } }} }\bigg]

Therefore, the Fourier sine transform of the given function is \sqrt{\dfrac{2}{\pi } }\bigg[{{\dfrac{3s}{4 +s^{2} }-\dfrac{2s}{9 +s^{2} } } }} }\bigg]

For more info:

https://brainly.in/question/27059345

https://brainly.in/question/29992667

Similar questions